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Abstract 

Program systems are used extensively for crystallo- 
graphic computing. Most existing systems have 
problems with language incompatibility, computational 
inefficiency and poor adaptability. This is because 
many desirable features demand opposing strategies in 
system design. Systems development is also 
complicated by the increasing number of computer 
types and sizes capable of doing crystallographic 
calculations. This, coupled with the widening 
aspirations of crystallographers, is making the task of 
developing an efficient and comprehensive program 
system increasingly difficult, particularly with con- 
ventional Fortran programming methods. The XTAL 
system is being developed with a different approach to 
these problems. The distribution of XTAL source code 
is in the RATMAC preprocessor language, the use of 
efficient machine-specific code is encouraged, and a 
much more flexible directory-type file structure is used 
for archive data files. 

1. Introduction 

Distributed program systems are now used extensively 
by crystallographers for reasons of convenience, 
economics, and because of a general reduction in the 
development of in-house software. The continued 
growth in 'production' type crystal structure analyses 
also means that many program users have little formal 
crystallographic training and are dependent on external 
sources for up-to-date software. 

Most existing program systems do, however, have 
serious deficiencies. Features such as transportability, 
generality, computational efficiency and flexibility often 
demand opposing design strategies, despite the use of 
Fortran as the source language. As a result, systems 
optimizing computational efficiency often invoke 
machine-specific code which seriously affects their 
transportability. Others concentrate on transport- 
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ability by using only a subset of instructions common 
to most Fortran compilers and this often degrades 
relative computational efficiency on machines where 
powerful machine-specific Fortran features are avail- 
able. In the same way, programs designed for a wide 
range of structure types and sizes are often inefficient 
for specific problems and relatively difficult to adapt or 
modify. It is not uncommon for a program system to 
sacrifice one feature for another or to compromise on 
them all. 

The problems facing future systems programmers 
will not be simpler. Rapid advances in computer 
technology have spawned an impressive array of 
machine types and sizes which are capable of doing 
crystallographic calculations. As a result the degree of 
transportability and/or efficiency possible with Fortran 
systems a decade ago is just not possible now with 
scores of manufacturers and hundreds of machine 
types. Future program systems must be able to adapt 
to these hardware changes, and the accompanying 
operating system software, if an acceptable level of 
transportability and efficiency is to be achieved. 

The single most important obstacle to improving 
program systems is the Fortran programming language 
itself. The original arguments for Fortran as a system 
language, namely transportability, simplicity and 
adaptability, have been eroded away in recent years. 
Why not then use the other high-level languages such 
as Algol, PL1, APL or Pascal? All have more powerful 
and logical command structures. The answer is that not 
one of these languages is as widely accepted as Fortran, 
or have compilers which produce highly optimized 
code. 

The importance and the inadequacy of Fortran has 
given birth to a new breed of languages, the Fortran 
preprocessors. Preprocessor languages have structured 
features similar to languages such as Pascal, but differ 
from these in that they are not translated (i.e. compiled) 
directly into machine code. Rather, the preprocessor 
language is 'preprocessed' into another language, such 
as Fortran, and this in turn is compiled in the normal 
way. In one respect the development of preprocessors 
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appears to be a retrograde step. There is one more 
stage to the implementation process, and one more 
language to be implemented. However, these draw- 
backs are small compared to the gains to be made 
elsewhere. For this reason the preprocessor language 
RATMAC (Munn & Stewart, 1978, 1979) is used with 
the XTAL system. The implications of RATMAC for 
XTAL are discussed in § 2. 

It is neither possible nor economical for all the 
components of a major program system to be resident 
in core at one time. An important consideration in the 
design of a program system therefore is the method of 
partitioning a calculation into convenient logical units. 
Many individual system features are dependent on how 
these partitions are linked, and how they are to be 
organized in core at execution time. 

The three principal linking methods are: 'stand- 
alone' routines which communicate via an independent 
set of data files; program 'overlays' called from a 
controlling root element (the 'nucleus') which remains 
resident in memory; or, in the case of machines with 
VMS (virtual-memory operating systems), a contiguous 
block of routines which are paged into core as required 
for execution. Understanding the properties of these 
linking procedures is clearly important if a program 
system is to be accessible to a range of machine types 
and operating systems. Considerations that have gone 
into the structuring and partitioning of subroutines in 
the XTAL system, and the provision of different linking 
procedures, will be discussed in § 3. 

For program systems capable of separate 
calculations there must be some mechanism for 
controlling which, and in what order, are performed. At 
the simplest level are those program systems that 
execute as stand-alone routines. In this case control is 
exercised by the user via the local command language. 
For large systems operating in an overlay or a VMS 
environment, the control function must be managed 
internally by one of the XTAL system routines, and 
directed by the user via the input data stream. These 
routines are referred to as the system 'nucleus'. 
Typically, the nucleus routines are responsible for 
sifting the input data stream for control parameters and 
acting upon them accordingly. The nucleus approach 
has the double advantage of concentrating the essential 
'driver' routines in one place to minimize redundancy, 
and, most importantly, it centralizes routines that often 
pose implementation difficulties. The use of the nucleus 
concept in the XTAL system will be discussed in § 4. 

An area that frequently causes implementation 
difficulties is line input-output (I/O). I/O instructions 
represent the essential interface between the program 
and the user and must as a consequence provide 
maximum flexibility. Such flexibility inevitably involves 
some form of machine specificity and this, as we have 
stated, is not conducive to transportability. The lack of 
standards for Fortran I/O instructions such as 

BUFFERIN/BUFFEROUT,  DECODE/ENCODE,  
binary READ/WRITE,  formatted READ/WRITE,  
PRINT/PUNCH and all the different ways they are 
parameterized is a strong indictment of the computer 
industry. The number of parameters and rules 
associated with the FORMAT statements of different 
manufacturers is almost limitless. In most systems, 
therefore, line input-output code is very difficult to 
make transportable. With the XTAL system specificity 
is not such a problem because the RATMAC language 
permits machine-specific instructions. However, line 
input-output poses difficulties in other respects. 
Fortran input-output functions are usually handled by 
a series of run-time library (RTL) routines. These 
routines, because of their general capabilities, are 
relatively large and slow. In the XTAL system the RTL 
routines for Fortran I/O are replaced with small 
nucleus subroutines which are much more specific to 
crystallographic needs. Then at the option of the 
implementor the Fortran RTL may be eliminated. 
Details of this are given in § 5. 

The design of crystallographic programs depends 
largely on the methods of storing and manipulating 
data. The large variations in size and nature of 
crystallographic data make their proper management 
absolutely crucial. It is generally accepted that the most 
efficient method of storing data in a program is as a 
single one-dimensional open-ended array (Stewart, 
1976b). Data of different types are packed into this 
array with appropriate markers set to identify the 
boundaries. Use of these markers facilitates rapid and 
easy access to the data and permits memory to be 
allocated only as required. Memory-allocation pro- 
cedures of either the 'static' type (fixed partitions or 
once-per-calculation) or 'dynamic' type (during a 
calculation) are increasingly important with the advent 
of multi-task variable-partition operating systems. This 
is because they encourage efficient and economical use 
of resources. Details of data-management procedures 
in the XTAL system are given in § 6. 

One other aspect of the XTAL system that will be 
discussed here is the structure of the 'archival data file' 
used to store crystallographic information between 
calculations. Because the form and size of crystallo- 
graphic data can vary greatly from problem to problem 
and from calculation to calculation, it is difficult to 
have an efficient, yet flexible, structure for this file. 
Most data files have a fixed-sequence type of format 
which works well for an 'average' type of analysis, but 
is inefficient, and occasionally even inoperable, when 
problems depart too far from normal. Archiving data 
associated with either a protein analysis or an accurate 
electron density study is generally not feasible with the 
fixed-sequence data files of existing systems. For this 
reason the XTAL system has adopted a new type of 
'directory-driven' file that adapts well to a range of 
problem types. Details of this file are given in § 7. 



S. R. H A L L ,  J A M E S  M. S T E W A R T  A N D  R O B E R T  J. M U N N  981 

2. T h e  R A T M A C  p r e p r o c e s s o r  Table 1. RA TFOR control instructions 

The RATMAC language (Munn & Stewart, 1978, 
1979) is a combination of the structured high-level 
language RATFOR and the in-line editor MACRO, 
both of which were developed by Kernighan & Plauger 
(1976). Advantages in adopting RATMAC as the 
distribution and implementation language of the XTAL 
system have already been reported (Stewart & Munn, 
1978). 

Using RATMAC as the source language, the XTAL 
system is implemented in a two-stage process. The 
distributed R A T F O R / M A C R O  instructions are con- 
verted into Fortran using the RATMAC preprocessor, 
and the Fortran is then compiled into machine code. At 
first sight this two-stage process appears to complicate 
XTAL implementation rather than simplify it. There is 
also a need to implement the RATMAC preprocessor 
itself at each installation. Experience has shown, 
however, that these factors are minor compared to the 
overall gains possible through use of the preprocessor. 
The preprocessor is non-proprietary (i.e. no commercial 
copyright) and is supplied with the XTAL system in 
two versions. The first is a non-optimized 'bootstrap' 
program written in ANSI Fortran, that can be compiled 
directly on most machines. The second version is the 
RATMAC preprocessor which is written in RATFOR/  
MACRO ready to be processed using the bootstrap 
program. This in turn can be compiled to form an 
optimized working preprocessor program by invoking 
machine-specific features. 

The advantages offered by RATMAC are best 
illustrated by describing the properties of its component 
parts, RATFOR and MACRO. 

RA TFOR (an acronym of RA Tional FORtran) 

This is a high-level language similar to Fortran 
except for the structured control features that enable 
'top-down' programming. Most Fortran instructions 
are acceptable to the RATMAC preprocessor and are 
passed to the output file unaltered. However, unlike 
Fortran, the use of statement numbers and of GO TO's 
is discouraged. Calculations are controlled with the 
instructions listed in Table 1. 

In general, control instructions act upon a block of 
statements bounded by the braces { and }. Conditions 
for the IF, ELSE IF, WHILE and UNTIL instructions 
are similar to those for the Fortran logical-IF type. An 
important advantage of RATFOR over Fortran is that 
it promotes a more logical organization of programs 
and produces code in which the essential algorithmic 
structure is apparent. This is best illustrated with an 
example. Table 2 shows a typical bubble sort algo- 
rithm written in both RATFOR and Fortran. 

The two-loop (one backward, one forward) structure 
of a bubble sort is largely obscured in the Fortran code. 

Conditional 
if ((condition)) 

(statement block) 

else if ((condition)) 

(statement block) 
} 

else 

(statement block) 
} 

A chain of successive logical conditions. 
The (statement block) associated 
with the first true (condition) is 
executed. If no true (condition) is 
found the (statement block) associated 
with the trailing else is executed. 

Looping 
while ((condition)) While the (condition) is true, (statement 

{ block) is repeatedly executed. 
(statement block) 
} 

repeat 
{ (statement block) is executed 'forever'. 
(statement block) 
} 

repeat 
{ (statement block) is repeated until 
(statement block) (condition) becomes true. 

} The (condition) test is at the loop 
until ((condition)) end. 
for ((initialization) ;(condition ) ;(reinitialization)) 

{ After (initialization) is executed a 
(statement block) 

do (loop limits) 
{ 
(statement block) 
} 

'while' loop is set up based on 
(condition); at the end of each loop 

the (reinitialization) statement is executed. 
Equivalent of the familiar Fortran DO 

(without statement labels). 

More details of these structures and their uses can be found in 
Kernighan & Plauger (1976) and Munn & Stewart (1978, 
1979). 

In contrast the structured RATFOR code is easier to 
read. RATFOR encourages the programmer to write 
well organized code that consequently is easier to 
debug and modify. 

MA CRO 

The structured control features of RATFOR are 
important to the XTAL system, but it is the MACRO 
facility of the RATMAC preprocessor that offers the 
greatest gains towards the system objectives already 
discussed. In simple terms, a macro provides for in-line 
substitution and global editing of the Fortran code. As 
the name 'macro' suggests its principal purpose is to 
replace repeated blocks of code with a single name, 
much as a FUNCTION subprogram does in Fortran. 
However, unlike a FUNCTION, a macro does not have 
to be executable and is only a recognizable entity before 
RATMAC processing. 
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Table 2. Comparison of RA TFOR and Fortran for the 
bubble sort subroutine 

(A) R A T F O R  
subroutine rsort (V,n) 
real V(n) # array of real numbers to be sorted 
logical notend # notend is set false if a pass 

# produces no interchanges 
# 
notend--.true. 
f o r ( i = n ; i >  l & n o t e n d z i = i -  i) 

notend=.false. 
for (j = l ; j  < i;j = j  + 1) 
if (V(j) > V(J + 1)) # elements out of order 

notend=.true. 
R = V(j) 
V(j) = V(j + 1) 
V(j + 1) = R 

} # end of j  loop 
} # end of i loop 
return 
end 

# 
# interchange elements 
# 

(B) Fortran 
SUBROUTINE FSORT (V,N) 
REAL V(N) 
LOGICAL N O T E N D  
N M I = N - I  

C 
C . . . .  C H E C K  FOR N.LE.I 
C 

IF (NM I.LE.0) R E T U R N  
C . . . .  SETUP REVERSE LOOP N TO 2 
C 

DO 2 L=I ,  NMI 
I = N - L  
NOTEND=.FALSE.  
DO 3 J = 1,I 
IF (V(J).LE.V(J+ 1)) GO TO 3 
R=V(J)  
V(J)=V(J+ I) 
V(J+ I)=R 

3 C O N T I N U E  
IF (.NOT. NOTEND)  R E T U R N  

2 C O N T I N U E  
R E T U R N  
END 

A macro instruction is defined as 

MACRO: (name:, definition), 

where 'name:'  is the name by which the macro is 
referenced in the RATMAC code, and 'definition' is a 
collection of programming steps. A macro name may 
have up to nine arguments, i.e. presented by the 
combination $n, where n is the argument number. For 
example, 

MACRO:(BITSWORD:,36),  
MACRO:(BITSCHAR:,8)  

and 

MACRO :(IFIX:,INT(SIGN (0.5,$1)+$1)) 

define the bits per word, bits per character and real to 
integer rounding function for a given machine. On 
preprocessing, every reference to BITSWORD:, 
BITSCHAR" and IFIX:(X) in the RATMAC code 
generates a 32, 8 and INT(SIGN(0.5,X) + X) respec- 
tively in the Fortran code. 

A particularly good example of a substitution macro 
is the XTAL system common macro, SYSCOM:. 
SYSCOM: is defined at the beginning of the XTAL 
code and thereafter programs using the system 
common block include only the statement SYSCOM:. 
This type of use results in simpler, more concise and 
more legible programs, and moreover ensures that any 
changes in the system common block are global 
changes. 

Macros with 'dynamic' properties are also possible. 
For instance, we would replace the last line in the 
RATFOR bubble sort subroutine in Table 2 with the 
statement, SWAPIA:(J ,J+I)  where this macro was 
previously defined as 

MACRO:(SWAPIA:,R=V($1);  V($1)= V($2); V($2) 
= R). 

This macro generates different code according to the 
values of the arguments $1 and $2. For instance, the 
statement SWAPIA:(15,IPT+2)in the RATFOR code 
will appear in the Fortran code as the three lines 

R = V ( 1 5 )  V ( 1 5 ) = V ( I P T + 2 )  V ( I P T + 2 ) = R .  

Machine-specific code can also be introduced into a 
program system using macros. For example, a 
machine-specific bit-string mover could be incorporated 
as  

MOVEBITS" ((word FROM),  (bit N), (word TO), 
(bit M), (bit length NBITS)) 

with requests that a bit string of length NBITS, starting 
at bit-position N of word FROM, be moved to word 
TO, starting at bit-position M. The definition of this 
macro for different machines is 

Univac 1108" MACRO • (MOVEBITS:,FLD(35- 
$4,$5,$3) = FLD(35-$2,$5,$1)) 

CDC Cyber73: MACRO" (MOVEBITS:,CALL 
STRMOV ($1,$2,$5,$3,$4)) 

DEC VAX11/780: MACRO :(MOVEBITS:,CALL 
LIB$INSV(LIBSEXTZV 
($ 2,$5,$1 ),$4,$ 5,$3)) 

PE 8/32: MACRO" (MOVEBITS:,$3 = 
IEOR($3,ISHFT(IEOR 
(ISHFT(ISHFT($1,32-$5-$2), 
$5,-32),ISHFT(ISHFT($3,32- 
$5-$4),$5-32)),$4))). 

Input-output control is one of the many other areas 
where macros are useful for machine-specific sub- 
stitution. The Fortran non-buffered READ instruction 
varies considerably from machine to machine and 
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could be conveniently applied in a RATMAC program 
as, say, 

BINREAD: ((device), (parity),  (buffer), (number of 
words), (parameter array)), 

where the definition is 

ANSI Fortran: MACRO :(BINREAD:,READ($1) 
($3(KIK),KIK = 1,$4)) 

UNIVAC 1108" MACRO:(BINREAD: ,CALL AA88 
($1,$2,$3,$4,$5)) 

PE 8/32: MACRO:(BINREAD:,CALLSYSIO 
($5,X' 59',$1,$3,$4"4,0)) 

CDC Cyber73" MACRO:(BINREAD: ,BUFFER 
IN($1,$2)($3 ( 1),$3 ($4));IF 
(UNIT ($1).EQ.1)IQUIT = 1). 

Macros may also call other macros. For example, a 
macro that limits a bit-string to the length of one word 
could be of the form 

MAC RO: (STRLIM :,$2 = MIN0($1,BITSWORD :)). 

It is also possible to perform arithmetic and logical 
operations within the macro itself and have the result 
deposited in the Fortran. A typical use might be in a 
macro that converts the number of words into the 
number of characters; for example, 

MACRO :(CONVCHAR :,[$2 = arith :($1,*,arith: 
(BITSWO RD :,/,B ITSC HAR :))]) 

would mean that the RATMAC statement 
CONVCHAR:(15 ,NCHAR) would be processed into 
Fortran as NCHAR = 60 (using the values of 
BITSWORD: and BITSCHAR: defined above). The 
macro arith: does built-in integer arithmetic. 

Macros are capable of referencing their own names 
in recursive-type operations. A good example of a 
recursive macro is given by Munn & Stewart (1978) for 
converting an octal number to decimal. The definition 
string is 

MACRO: (LSTCHR:,[substr:($1,1enstr:($1), 1)]) 
MACRO: 
(FSTPART :, [ substr :($1,1 ,arith :(lenstr :($1),-,  1))]) 
MACRO: (OCTAL:,lifelse:($1. 0,[arith:(LSTCHR" 
($1),+,arith:(8, ,OCTAL:(FSTPART:($1))))])]). 

The RATFOR statements N = OCTAL:(177) and I 
= IA(OCTAL:(77),2) generate the Fortran state- 
ments, N = 127 and I = IA(63,2). 

In summary, the combination of the RATFOR and 
MACRO features in the RATMAC preprocessor 
provides important benefits to a program system. 
Macros make it possible to use machine-specific 
functions in the system and yet to isolate them totally 
from the program code. The definitions of machine- 
specific macros are placed at the front of the system 
and are adjusted to the local computing environment 

before implementation. Apart from this no other 
changes to the system code should be necessary. In 
general, RATMAC code is more concise, logical, 
legible, transportable and adaptable than Fortran. 
Because machine-specific features can be used the 
resulting compiled code will also be more efficient. 
Further examples in the use of RATMAC will be 
discussed in the subsequent sections. 

A more subtle advantage of using RATMAC is that 
the syntax of the language is under user control The 
only limitation on the syntax is that the syntactical 
construct be translatable into ANSI Fortran. Thus, for 
example, if a CASE statement should prove to be a 
desirable programming construct, it can be added by 
the users, independent of whether ANSI Fortran 
allows such a construct. A concomitant advantage of 
this is that the user can be largely isolated from changes 
in the Fortran standard. Instead of each individual 
program being modified to conform to any new Fortran 
standard, only the preprocessor needs to be altered to 
generate Fortran compatible with the new standard. 

3. The system structure 

In the Introduct ion we discussed the importance of 
planning how the component parts of the program 
system are put together. Two fundamental 
considerations in system structure are (1) the micro- 
structure of the individual programs, and (2) the 
load-module structure of the system as a whole. 

Micros tructure  

Microstructure is the term we shall use to describe 
the organization and partitioning of code within a 
calculation unit. There are many ways to approach this 
aspect of program design and each programmer tends 
to have a particular style based on past experience (you 
can always recognize the old machine-coders!). There 
are, however, two essentially distinct approaches. One 
is to partition a calculation into a large number of small 
subroutines, each with a specific task. The other is to 
write programs composed of essentially contiguous 
code and containing a minimum of calls to sub- 
routines. 

Both approaches have their strong points. The first 
reduces redundancy of code and therefore minimizes 
core utilization. To many programmers it also 
simplifies writing and reading codes in a similar way to 
the RATMAC macros. However, unlike macros, 
subroutines usually remain partitioned at execution 
time. This means that there can be significant over- 
heads associated with the subroutine calling sequence 
and this can have detrimental effects on computational 
efficiency. The strength of the contiguous in-line code 
approach is the reverse. Large block programs contain 
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redundant code but are usually faster than their 
multi-subroutine counterparts. 

However, even in this latter case RATMAC can 
offer significant advantages through a macro defined 
internal 'procedure' mechanism. Details of the three 
macros needed are given in Munn & Stewart (1979) 
together with examples of their use. 'Procedures' 
essentially remove redundant code by the use of 
ASSIGN'd GOTO's. 

The XTAL system uses both approaches according 
to the circumstances. For instance, subroutine calls are 
avoided in the 'inner loops' of CPU-intensive cal- 
culations. The use of RATMAC macros often reduces 
the need for smaller subroutines. However, where 
significant savings are possible through specialized 
subroutines, they are used. This is the case for systems 
operations such as line and file input-output, memory 
allocation, bit-string manipulation and packing, and 
other service control functions. In the XTAL system, 
as in the case of the XRAY system (Stewart, 1976a), 
subroutines performing these tasks are grouped 
together and referred to as the system nucleus. The 
importance of the system nucleus concept to the XTAL 
microstructure is threefold. It eliminates redundancy 
for the most commonly performed operations; it 
concentrates in one place those subroutines which are 
most susceptible to implementation difficulties; and 
lastly, and most importantly, it represents the 
controlling subunit and communication link for the 
whole program system. Further details of the nucleus 
are given in § 4. 

The implications of microstructure on a calculation 
are also dependent on the type of load module to be 
used at execution time. 

Load-module structure 

The finite size of direct-access memory usually 
requires that a program system be subdivided into 
convenient modules for loading. As discussed in § 1, 
there are at least three distinct methods of loading a 
program system - stand-alone, overlay and VMS 
paging. Unlike the XRAY system, which was intended 
mainly for use in overlay mode, the XTAL system 
structure takes into account both the stand-alone and 
overlay loading methods. Implementation is also 
straightforward on VMS machines, but the different 
methods of 'paging' make loading characteristics 
unpredictable. In theory, VMS should be most efficient 
when operations are concentrated in contiguous parts 
of the load module. The XTAL structure attempts to 
satisfy this requirement in major routines and in the 
way it stores and manipulates data (see § 6). However, 
there is some uncertainty in terms of overall VMS 
efficiency about the effect of repeated references to 
nucleus subroutines. One solution to this on some 
machines may be to force the nucleus subroutines to 

remain resident and not be paged. Fig. 1 shows 
diagrammatically how the different loading methods 
work with successive XTAL calculations. 

An essential consideration in the load-module 
structure of a program system is the ability of modules 
to communicate data to each other. In the XTAL 
system data exchange takes place at three levels. The 
first is via a data file containing detailed archival 
information about the problem in hand. The second 
level is via the system common block (SYSCOM) 
which contains essential control parameter information. 
For the overlay and VMS execution procedures the 
SYSCOM remains intact for the duration of a complete 
XTAL run. However, in the stand-alone mode 
SYSCOM is stored and recovered automatically (on a 
scratch file) between each load (see Fig. 1). This facility 
permits the nucleus routines to perform their control 
functions quite independently of the loading procedure. 
The third level is via a common block for a given 
calculational segment. 

4. The XTAL system nucleus 

The concept of the XTAL system nucleus was 
introduced in § 3. The nucleus contains those sub- 
routines that either perform operations common to all 
programs in the system or are necessary to control the 
interaction of these programs. 

In the XTAL system nucleus subroutines have 

S tandalone Overlay 

Calculation m 7" 1 [7~'v'~ ~-r:'~ ~. l oad  

• ml~l" P'I~ 1' i i:i:!:i:iiiii } ioadl °d. 

QX DQXA 

' , 

\ 
Calculation i~i ~iilt 4 ~d" ; 

Virtual Memory 

I Memoryl ~--~ Disc 
l l { I XTAI, I Files 

I 

:':::-::::2: 
QX 

Qx I QX 
DATA DL YA 1 

•..7~.-.-- 
i "'::::~':'X 

II PROG2 

i I 
I I 

Fig. 1. XTAL loading modes. 
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names of the form 'AAnn'  and are catalogued 
according to their function as follows: 

AA00---AA 19: system control, line input-output, 
and bit-string manipulation; 

AA2ff-AA39: binary sequential file input-output; 
AA40--AA59: memory allocation, data-time and 

error processing; 
AA60--AA79: direct-access file input-output; 
AA80--AA99: machine-specific subroutines which 

supersede or complement commonly 
used operations. 

In practice the nucleus routines are referenced using 
descriptive macro names. 

The number of nucleus subroutines is always kept to 
an absolute minimum and usually only subroutines 
AA80-AA99 will vary from machine to machine. Here 
is a brief description of the existing XTAL nucleus 
subroutines for the machine-independent part of the 
system. 

Macro Subroutine 
- -  AAAA 

AA~O 

READLINE: AA~ 1 

DCODEFLD:  AA~2 

MOVEWORD: AA03 

MOVEBYTE: AA•4 

MOVECTOR: AA~5 
MOVERTOC: 

COMPCHAR:  AA¢6 

NCODEFLD:  AA08 

Description 
Main entry-point routine 

in the XTAL nucleus 
which is responsible for 
system (once-only) 
start-up procedures, the 
loading mode and 
SYSCOM storage and 
recovery. 

Responsible for program 
scheduling, as directed 
by line input control 
parameters. 

Reads input lines (images) 
and identifies command 
parameters (described 
in § 5). 

Decodes input lines into 
numeric and alpha field 
data (described in § 5). 

Moves word-strings from 
one location to another 
in the one-dimensional 
Q x  array. 

Moves byte-strings from 
one location to another 
in the QX array. 

Packs and unpacks byte- 
strings into word 
strings, and vice versa. 

Compares a character- 
string with a series of 
character strings to find 
a match. 

Outputs line information 
(described in § 5). 

WRITEPKT: AA21 

READWPKT:  AA22 

PKTPOINT: AA23 

COPYFILE: AA24 

QXMEMORY: AA41 

AA42 

Writes binary sequential 
data file as packets in 
directory-type records 
(contents described in 
§ 7). 

Reads binary sequential 
data file. 

Extracts pointers to spec- 
ific data in packets from 
the record directory. 

Copies binary sequential 
data file in two-buffer 
mode. 

Allocates memory by 
expanding or contract- 
ing the QX data array 
(described in § 6). 

Handles all error con- 
ditions and exits via 
OZ00 or returns to 
calling program. 

In addition to the machine-independent AA routines 
there may be some machine-dependent ones supplied; 
for example: 

AA81 *CDC SPECIFIC* con- 
verts packed ASCII 
numeric characters to 
integers. Fortran rou- 
tine used by the time 
and data routines. 

AA82 *CDC SPECIFIC* ex- 
pands and releases 
memory to resident 
program. COMPASS 
routine used by AA41. 

AA83 *CDC SPECIFIC* moves 
byte-strings from one 
location to another. 
COMPASS routine re- 
places AA84 in CDC 
version of the XTAL 
nucleus. 

AA84 *CDC SPECIFIC* com- 
pares two byte-strings. 
COMPASS routine 
used by AA06. 

There are three additional system nucleus routines 
which, in overlay mode, load as separate modules. This 
is because their function is connected with the start-up 
and shut-down of calculations and because they are 
only resident in memory during the transition from one 
calculation to the next. 

MT00 Calculates memory required for next load 
module and the area used in the QX array as 
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a program common block. MT00 also reports 
the times and memory utilized in the previous 
program. 

SY00 System start-up initialization, and sets system 
common SYSCOM. 

OZ00 Error exit routine; tells the user reason for 
premature shut-down. 

5. Line input-output control 

In the XTAL system, input or output images are not 
processed by Fortran I/O routines. The Fortran 
R E A D / D E C O D E / E N C O D E / W R I T E / F O R M A T  
functions have been replaced by the XTAL 
nucleus subroutines AA01 (READLINE:)/AA02 
(DCODEFLD:)  and AA08 (WRITLINE:)/AA07 
(NCODEFLD:).  This has been done for three 
reasons: the nucleus subroutines are smaller than most 
Fortran library routines; they have features especially 
tailored to XTAL needs; and they avoid the difficulties 
often associated with the inconsistencies of Fortran I/O 
as implemented on various machines. 

Line input 

This is handled exclusively by routines AA01 and 
AA02. AA01 reads a line image of characters from the 
input file or device and places it in the buffer BFINIM. 
It then scans the leading characters of this buffer for an 
identification code which indicates whether the line 
image is for system control, program initialization, or 
program parameter input. If a system control code is 
detected AA01 uses AA02 to decode numeric 
information from the character buffer BFINIM into 
floating-point buffer BFINFP. The control function 
(see Table 3) is then completed before reading the next 
input image. 

Table 3. System input control functions 

Name Function 

T I T L E  alpha-numeric page leader 
REMARK alpha-numeric line insert 
FILES I/O file assignments 
MEMSET preset memory allocation 
SETID preset input image names 
FIELD preset input field formats 
ORDER preset input field order 
FINISH shut down system and exit 

If the identification code is not a system control code, 
the AA01 returns to its caller, which for program 
initialization codes will be the system scheduler AA00, 
and for program parameter codes will be the program 
itself. Again AA02 is used to convert numeric character 
information into floating-point numbers. 

A powerful feature of the AA01/AA02 routines is 
the provision for either free or fixed format line input. 
The user may fix the input image format with the 

FIELD control image. In free-format mode, numeric or 
alpha-numeric data are delimited by a blank or a 
comma. There are also special codes Sn and .n that 
enable skipping and positioning of data, and an added 
convenience for interactive input. The image 

PARAMS 1,23,,5.72 $3 1000 ,3 7 7 . - 1 , 6  256 

is decoded into successive fields containing 
I .,23.,7.7,5.72,null,256.,null, 1000. 

Another feature of AA02 is its flexibility in decoding 
numeric data of different forms. For instance, each field 
in the image 

3 3.~ 30 . -1  +3 +3. +.3+1 + 3 0 . - 1  3 0 - 1  .'03+2 

would be decoded as the number three. 

Line output 

This is controlled by routines AA07 and AA08. 
AA07 is responsible for translating floating-point data 
contained in a specified input array into character 
strings in an output buffer. The output routine AA08 
can automatically provide both page headings and sub- 
headings for column output if these are desired. 

The output format for AA07 is specified by a coded 
string of the form CCCLLDT where CCC is the 
right-justified column of the character string, LL is the 
total length of the character string, D is the number of 
digits after the decimal point for E- and for F-type 
formats or the number of 'forced' digits for I-type 
format, and T is the format type. There are nine format 
types: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

E-type format S.YYYY+_ZZ (S is blank or - ) ;  
F-type format SXXX.YYY; 
I-type format (base-10) SXXX (0 < X < 9); 
I-type format (base-2) SXXXX (0 < X < 1); 
I-type format (base-8) SXXXX (0 < X < 7); 
I-type format (base-36) SXXXX (0 < X < Z); 
binary packed number YYYY (0 < Y < 1); 
octal packed number YYYY (0 < Y < 8); 

(9) hexadecimal packed number YYYY (0 < Y < F). 
Format specification is simplified for the programmer 

by the macro FMT: (CCC,QLL.D) for the common 
format types (T=1,2,3). QLL.D is the Fortran-type 
parameter where Q is an E for T= 1, and F for T=2  and 
an I if T=3. An important feature of AA07 is its ability 
to change automatically the specified format to avoid 
an overflow of the LL parameter while maintaining the 
maximum number of significant places. If the number 
-1234.56789 was passed to AA07 with the format 
FMT: (10,F10.5) or 101052., it would be output as 
-1234.5679 (automatically dropping the last decimal 
place). If the format was FMT: (10,F6.3) the number 
would be output as -1235.  Yet again, if the format was 
FMT: (10,F5.3) then the output number would auto- 
matically adopt an E-type format - .+04 .  Further 
reduction in LL to 3 would result in a field overflow and 
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*** would be output. This illustrates the flexibility of 
AA07 in printing some information wherever possible. 

When the numeric data have been formatted, the 
output buffer is written out by the routine AA08. AA08 
is responsible for three functions: outputting numeric 
data and header information to both the primary and 
secondary line output files, controlling pagination and 
page title output, and monitoring line ouput priorities. 
All lines passed to AA08 are assigned an output 
priority, 1 to 5. Separate output priority limits are set 
for two separate output devices and this limit may be 
varied during an XTAL run. In this way the user can 
control the nature and the extent of line output on either 
device. The priority assigned to each line sent to AA08 
is based on its importance to the user. Priority 
categories are: 

line priority 1: essential output; 
line priority 2: abbreviated output; 
line priority 3: standard output; 
line priority 4: extended output; 
line priority 5: complete output, with I/O and 
memory diagnostics. 
A typical use of this facility would be to set the 

priority limits of the output files to 2 and 4. In this way 
the user can list (or scan with a CRT) the abbreviated 
file containing lines of priority 1 and 2, and then decide 
if further details are required from the extended output 
file containing lines of priority 1, 2, 3 and 4. This type 
of output control is important for interactive use of the 
XTAL system. 

6. Memory and data management 

The importance of carefully planned data management 
in program systems was stressed in the Introduction. 
The size and diversity of crystallographic data, the 
frequent use of word-packing, and the range of machine 
types currently in use make this one of the most difficult 
aspects of system design. We shall cover this topic in 
four parts: word specification, system common, 
program common and the QX data array. 

Word specification 

This is critical to any system because of the variation 
in the length of a single word from machine to machine, 
and because of the different ways integer, floating-point 
(real) and character information is used within these 
words. The XTAL system is designed to accommodate 
machines with a minimum integer word length of 16 
bits and a minimum real word of 32 bits. Allowing for 
16-bit integers, with the implied maximum magnitude of 
32 767, places the emphasis of data handling on real 
words. 

Real words are used for packing so that a full 32 bits 
are available for this operation. 

The only purpose for which integers must be used in 
XTAL is as indices to the QX data array. For 
machines with a 16-bit integer word the upper index 
limit of 32 767 is unlikely to prove a problem because 
of the commensurate limitation to the size of direct- 
access memory. Packed integer numbers (in a real 
word) are used extensively in order to reduce memory 
demand and increase computational speed. To ensure 
optimal speed for the packing/unpacking operations the 
macros MOVEBITS: and INTPACK:/INTUNPACK: 
are used. These macros are designed to use the fastest 
bit manipulation software available at each installation. 

System common 

This is the labelled COMMON/SYSCOM/consist-  
ing of some 250 words. SYSCOM is the data 
communication region for all subroutines within the 
nucleus and for all programs to the nucleus. The actual 
contents of SYSCOM depend on machine-specific 
(macro) parameters which ensure that its length is kept 
to an absolute minimum. SYSCOM may be the only 
labelled common in XTAL depending on the definition 
of the macros COMI:, COMF:, COMC: (see below). 
This is a considerable departure from the XRAY 
system and arises principally from the requirement of 
some overlay loaders that all labelled commons must 
also be declared in the root element. Limiting labelled 
commons also reduces problems with VMS execution 
on machines where common blocks are addressed 
indirectly through page 0. 

Program common 

For large calculations it is often necessary to have an 
efficient method for communicating data between 
the program subroutines or overlay segments. 
Traditionally this is done by using labelled commons 
specific to these routines. However, as discussed above, 
multiple use of labelled commons may not be efficient 
with some loaders. In the XTAL system flexibility 
is maintained by using the macros COMI:($1), 
COMF:($1) and COMC:($1) as the labels of any local 
labelled commons involving integer, real and character 
variables, respectively. $1 is the program name prefix. 
In this way, the XTAL installer can globally edit the 
local labelled commons to suit the requirements of the 
compiler and loader. 

QX data array 

This is the single one-dimensioned array used to 
store all directly addressable data in the XTAL system. 
In stand-alone and overlay loading modes, the length of 
the QX data array is varied dynamically according to 
the number of words currently needed to store data. 
For VMS operation, dynamic core allocation is 
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unnecessary and is disabled. Fig. 2 shows a typical 
layout of the QX data array. The array QX(1) is 
declared in SYSCOM and is assumed to be open-ended 
up to a possible memory maximum defined by 
MEMMAX:. Certain operating systems and loaders 
require that some memory immediately following 
SYSCOM be reserved for program code. Fig. 2 shows 
that the first 'usable' word of the QX array is defined as 
QX(QXSTAR+ 1). The value of the marker QXSTAR 
is non-zero for machines requiring that program code 
be loaded after SYSCOM. The value of QXSTAR 
needed to 'skip' the program code for each calculation 
is stored in the nucleus memory initialization routine 
MTO~) (see § 4). 

MT66 is also responsible for setting the marker 
QXWORK, which defines the last word of the QX 
array area which is the minimum data storage 
necessary for this program. The region 
QX(QXSTAR+I )  to QX(QXWORK) is, in fact, a 
pseudo-common area which is always allocated. In 
dynamic allocation mode, the array is initialized at 
QX(QXWORK) and is never reduced below this point. 
Requests for additional QX memory are to the nucleus 
subroutine AA41, specified by the marker QXREQU. 
AA41 allocates QXREQU, if available, and returns the 
actual amount of memory allocated as the marker 
QXAVAL. It is via these two parameters, QXREQU 
and QXAVAL, that the QX array is lengthened or 
shortened according to current demand. At all times 
the user may override the dynamic allocation aspect of 
QX by entering a MEMSET parameter (see Table 3) to 
fix the length of the QX array. 

7. Data file structure 

the contents of all succeeding packets in that record. In 
this way the packets and the logical records need only 
be as long as the data demand. The structure of the 
directory is simple. Each word in the directory packet 
contains an identification number which is unique to 
the specific crystallographic item stored in the 
identically ordered word in all subsequent packets of 
that logical record. Fig. 3 shows a typical data file 
structure. For the programmer, the task of extracting 
data from a directory-driven file is further simplified by 
the nucleus subroutine AA23 which points to the 
appropriate word in the packet containing a specified 
identification number. 

It is worth noting that the logical record also 
contains information about the lengths of the packets, 
the number of packets, and the physical buffer lengths 
used in the input-output of the data file. However, this 
book-keeping information is of little interest to the 
XTAL user or, for that matter, to the XTAL 
programmer, because the physical aspects of file I/O 
are handled by the nucleus routines AA21-AA24.  
Details of the structure of the XTAL data file, and the 
assigned identification numbers, are given in Hall, 
Stewart, Norden, Munn & Freer (1980). 

The concepts outlined in this paper have been the 
impetus for a cooperative programming effort 
sponsored by the National Resource for Computations 
in Chemistry (NRCC) and the National Science 
Foundation. The details of the proposed system are 
available in a number of technical reports which can be 
obtained from the University of Maryland Computer 
Science Center. 

The structure of the archive-type data files has in the 
past represented an obstacle to the use of program 
systems for many types of problems. This is because 
data files are usually of a f ixed sequential format.  Such 
a format provides for simple and fast access for the Pa~kl 
majority of problems but is relatively inflexible and 
even unusable in many situations. 

The XTAL system uses a 'new' type of data file 
structure. As with the XRAY system, the file is divided Pack2 
into 'logical records' according to the type of crystallo- 
graphic data. Each logical record is subdivided into 
units of information referred to as 'packets'. The first 

Pack3 

packet of each logical record contains the 'directory' to 

i I 

e[ A ~ A / ~ .  un  " / ~ . s Y $ ~ O v e r l a y ~ : : . Q ×  ::l:i:i:::: A c t i v e  :i:::::::;:| 

1 V/~/~/~% ~//,~,,//,~////~,~ii:iii!ii;!j;iii~i]i~i:i~i~i:i:i:i:ii;iii!i~i!ii 

QX(1) gx (STAR) QX (WORK) QX (AVAL) QX (MAXM) 

Fig. 2. XTAL data management. 
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Fig. 3. XTAL data file structure. 
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The XTAL system and the concepts on which it is 
based have recently been used under the sponsorship of 
NRCC to develop a portable multiple isomorphous 
replacement program. A discussion of this project and 
its wider implication can be found in Robinson (1980). 
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Abstract 

The results of an investigation of the polarization 
coefficient of X-ray radiation diffracted in real crystals 
are given. The form of the angular dependence of the 
polarization coefficient in the range of the Bragg 
reflection is found to be qualitatively different in the 
cases of primary and secondary extinction. It allows 
the unambiguous identification of the type of extinction 
in the crystal. On the basis of the experimental data 
analysis of the polarization coefficients for silicon and 
germanium crystals with different dislocation densities, 
it is shown that the mosaic model of a crystal is suitable 
for describing X-ray scattering in real crystals if the 
dislocation density is higher than 104 mm -2 and in 
practice only primary extinction is present in mosaic 
crystals. An expression is given for the primary 
extinction factor for the mosaic crystal, obtained on 
the basis of the solution of the Takagi-Taupin 
equations for finite crystals. This expression was used 
for the analysis of the LiF and NaF structure factors 
measured by different authors. The effective size which 
was obtained for the domains appeared to be physi- 
cally reasonable and to be directly connected with the 
value of the dislocation density in the crystal. 

1. Introduction 

Extinction in X-ray crystallography is described in 
most cases in terms of the Darwin (1914) mosaic block 
model. Zachariasen (1967) developed the formalism of 
the extinction theory on the basis of the Darwin 
energy transfer equations and applied it in the analysis 
of X-ray data for a number of substances 
(Zachariasen, 1968a,b). The Zachariasen theory 
greatly renewed interest in extinction. Coppens & 
Hamilton (1970) generalized the Zachariasen approach 
in the case of extinction anisotropy. It was established 
by many authors that the Zachariasen formalism 
significantly improved the agreement between the 
calculated and corrected-for-extinction experimental 
structure factors. This formalism was refined by 
Cooper & Rouse (1970) and more strictly recon- 
sidered by Becker & Coppens (1974a, 1975). At the 
same time, different authors pointed out the short- 
comings of the indicated formalism. Its main limitation 
is the kinematical approach (Werner, 1969), for it is 
based on the transfer differential equations, which take 
no account of coherence, since they involve only the 
intensities of the beams. This method does not appear 
to be suitable for correcting for severe primary 


