
979

Acta Co'st. (1980). A36, 979-989

XTAL: New Concepts in Program System Design

BY S. R. HALL

Crystallography Centre, University of Western A ustralia, Nedlands, Australia

AND JAMES M. STEWART AND ROBERT J. MUNN

Department of Chemistry and Computer Science Center, University of Maryland, College Park, Maryland, USA

(Received 14 February 1980; accepted 18 June 1980)

Abstract

Program systems are used extensively for crystallo-
graphic computing. Most existing systems have
problems with language incompatibility, computational
inefficiency and poor adaptability. This is because
many desirable features demand opposing strategies in
system design. Systems development is also
complicated by the increasing number of computer
types and sizes capable of doing crystallographic
calculations. This, coupled with the widening
aspirations of crystallographers, is making the task of
developing an efficient and comprehensive program
system increasingly difficult, particularly with con-
ventional Fortran programming methods. The XTAL
system is being developed with a different approach to
these problems. The distribution of XTAL source code
is in the RATMAC preprocessor language, the use of
efficient machine-specific code is encouraged, and a
much more flexible directory-type file structure is used
for archive data files.

1. Introduction

Distributed program systems are now used extensively
by crystallographers for reasons of convenience,
economics, and because of a general reduction in the
development of in-house software. The continued
growth in 'production' type crystal structure analyses
also means that many program users have little formal
crystallographic training and are dependent on external
sources for up-to-date software.

Most existing program systems do, however, have
serious deficiencies. Features such as transportability,
generality, computational efficiency and flexibility often
demand opposing design strategies, despite the use of
Fortran as the source language. As a result, systems
optimizing computational efficiency often invoke
machine-specific code which seriously affects their
transportability. Others concentrate on transport-

0567-7394/80/060979-11501.00

ability by using only a subset of instructions common
to most Fortran compilers and this often degrades
relative computational efficiency on machines where
powerful machine-specific Fortran features are avail-
able. In the same way, programs designed for a wide
range of structure types and sizes are often inefficient
for specific problems and relatively difficult to adapt or
modify. It is not uncommon for a program system to
sacrifice one feature for another or to compromise on
them all.

The problems facing future systems programmers
will not be simpler. Rapid advances in computer
technology have spawned an impressive array of
machine types and sizes which are capable of doing
crystallographic calculations. As a result the degree of
transportability and/or efficiency possible with Fortran
systems a decade ago is just not possible now with
scores of manufacturers and hundreds of machine
types. Future program systems must be able to adapt
to these hardware changes, and the accompanying
operating system software, if an acceptable level of
transportability and efficiency is to be achieved.

The single most important obstacle to improving
program systems is the Fortran programming language
itself. The original arguments for Fortran as a system
language, namely transportability, simplicity and
adaptability, have been eroded away in recent years.
Why not then use the other high-level languages such
as Algol, PL1, APL or Pascal? All have more powerful
and logical command structures. The answer is that not
one of these languages is as widely accepted as Fortran,
or have compilers which produce highly optimized
code.

The importance and the inadequacy of Fortran has
given birth to a new breed of languages, the Fortran
preprocessors. Preprocessor languages have structured
features similar to languages such as Pascal, but differ
from these in that they are not translated (i.e. compiled)
directly into machine code. Rather, the preprocessor
language is 'preprocessed' into another language, such
as Fortran, and this in turn is compiled in the normal
way. In one respect the development of preprocessors

© 1980 International Union of Crystallography

980 XTAL: NEW CONCEPTS IN PROGRAM SYSTEM DESIGN

appears to be a retrograde step. There is one more
stage to the implementation process, and one more
language to be implemented. However, these draw-
backs are small compared to the gains to be made
elsewhere. For this reason the preprocessor language
RATMAC (Munn & Stewart, 1978, 1979) is used with
the XTAL system. The implications of RATMAC for
XTAL are discussed in § 2.

It is neither possible nor economical for all the
components of a major program system to be resident
in core at one time. An important consideration in the
design of a program system therefore is the method of
partitioning a calculation into convenient logical units.
Many individual system features are dependent on how
these partitions are linked, and how they are to be
organized in core at execution time.

The three principal linking methods are: 'stand-
alone' routines which communicate via an independent
set of data files; program 'overlays' called from a
controlling root element (the 'nucleus') which remains
resident in memory; or, in the case of machines with
VMS (virtual-memory operating systems), a contiguous
block of routines which are paged into core as required
for execution. Understanding the properties of these
linking procedures is clearly important if a program
system is to be accessible to a range of machine types
and operating systems. Considerations that have gone
into the structuring and partitioning of subroutines in
the XTAL system, and the provision of different linking
procedures, will be discussed in § 3.

For program systems capable of separate
calculations there must be some mechanism for
controlling which, and in what order, are performed. At
the simplest level are those program systems that
execute as stand-alone routines. In this case control is
exercised by the user via the local command language.
For large systems operating in an overlay or a VMS
environment, the control function must be managed
internally by one of the XTAL system routines, and
directed by the user via the input data stream. These
routines are referred to as the system 'nucleus'.
Typically, the nucleus routines are responsible for
sifting the input data stream for control parameters and
acting upon them accordingly. The nucleus approach
has the double advantage of concentrating the essential
'driver' routines in one place to minimize redundancy,
and, most importantly, it centralizes routines that often
pose implementation difficulties. The use of the nucleus
concept in the XTAL system will be discussed in § 4.

An area that frequently causes implementation
difficulties is line input-output (I/O). I/O instructions
represent the essential interface between the program
and the user and must as a consequence provide
maximum flexibility. Such flexibility inevitably involves
some form of machine specificity and this, as we have
stated, is not conducive to transportability. The lack of
standards for Fortran I/O instructions such as

BUFFERIN/BUFFEROUT, DECODE/ENCODE,
binary READ/WRITE, formatted READ/WRITE,
PRINT/PUNCH and all the different ways they are
parameterized is a strong indictment of the computer
industry. The number of parameters and rules
associated with the FORMAT statements of different
manufacturers is almost limitless. In most systems,
therefore, line input-output code is very difficult to
make transportable. With the XTAL system specificity
is not such a problem because the RATMAC language
permits machine-specific instructions. However, line
input-output poses difficulties in other respects.
Fortran input-output functions are usually handled by
a series of run-time library (RTL) routines. These
routines, because of their general capabilities, are
relatively large and slow. In the XTAL system the RTL
routines for Fortran I/O are replaced with small
nucleus subroutines which are much more specific to
crystallographic needs. Then at the option of the
implementor the Fortran RTL may be eliminated.
Details of this are given in § 5.

The design of crystallographic programs depends
largely on the methods of storing and manipulating
data. The large variations in size and nature of
crystallographic data make their proper management
absolutely crucial. It is generally accepted that the most
efficient method of storing data in a program is as a
single one-dimensional open-ended array (Stewart,
1976b). Data of different types are packed into this
array with appropriate markers set to identify the
boundaries. Use of these markers facilitates rapid and
easy access to the data and permits memory to be
allocated only as required. Memory-allocation pro-
cedures of either the 'static' type (fixed partitions or
once-per-calculation) or 'dynamic' type (during a
calculation) are increasingly important with the advent
of multi-task variable-partition operating systems. This
is because they encourage efficient and economical use
of resources. Details of data-management procedures
in the XTAL system are given in § 6.

One other aspect of the XTAL system that will be
discussed here is the structure of the 'archival data file'
used to store crystallographic information between
calculations. Because the form and size of crystallo-
graphic data can vary greatly from problem to problem
and from calculation to calculation, it is difficult to
have an efficient, yet flexible, structure for this file.
Most data files have a fixed-sequence type of format
which works well for an 'average' type of analysis, but
is inefficient, and occasionally even inoperable, when
problems depart too far from normal. Archiving data
associated with either a protein analysis or an accurate
electron density study is generally not feasible with the
fixed-sequence data files of existing systems. For this
reason the XTAL system has adopted a new type of
'directory-driven' file that adapts well to a range of
problem types. Details of this file are given in § 7.

S. R. H A L L , J A M E S M. S T E W A R T A N D R O B E R T J. M U N N 981

2. T h e R A T M A C p r e p r o c e s s o r Table 1. RA TFOR control instructions

The RATMAC language (Munn & Stewart, 1978,
1979) is a combination of the structured high-level
language RATFOR and the in-line editor MACRO,
both of which were developed by Kernighan & Plauger
(1976). Advantages in adopting RATMAC as the
distribution and implementation language of the XTAL
system have already been reported (Stewart & Munn,
1978).

Using RATMAC as the source language, the XTAL
system is implemented in a two-stage process. The
distributed R A T F O R / M A C R O instructions are con-
verted into Fortran using the RATMAC preprocessor,
and the Fortran is then compiled into machine code. At
first sight this two-stage process appears to complicate
XTAL implementation rather than simplify it. There is
also a need to implement the RATMAC preprocessor
itself at each installation. Experience has shown,
however, that these factors are minor compared to the
overall gains possible through use of the preprocessor.
The preprocessor is non-proprietary (i.e. no commercial
copyright) and is supplied with the XTAL system in
two versions. The first is a non-optimized 'bootstrap'
program written in ANSI Fortran, that can be compiled
directly on most machines. The second version is the
RATMAC preprocessor which is written in RATFOR/
MACRO ready to be processed using the bootstrap
program. This in turn can be compiled to form an
optimized working preprocessor program by invoking
machine-specific features.

The advantages offered by RATMAC are best
illustrated by describing the properties of its component
parts, RATFOR and MACRO.

RA TFOR (an acronym of RA Tional FORtran)

This is a high-level language similar to Fortran
except for the structured control features that enable
'top-down' programming. Most Fortran instructions
are acceptable to the RATMAC preprocessor and are
passed to the output file unaltered. However, unlike
Fortran, the use of statement numbers and of GO TO's
is discouraged. Calculations are controlled with the
instructions listed in Table 1.

In general, control instructions act upon a block of
statements bounded by the braces { and }. Conditions
for the IF, ELSE IF, WHILE and UNTIL instructions
are similar to those for the Fortran logical-IF type. An
important advantage of RATFOR over Fortran is that
it promotes a more logical organization of programs
and produces code in which the essential algorithmic
structure is apparent. This is best illustrated with an
example. Table 2 shows a typical bubble sort algo-
rithm written in both RATFOR and Fortran.

The two-loop (one backward, one forward) structure
of a bubble sort is largely obscured in the Fortran code.

Conditional
if ((condition))

(statement block)

else if ((condition))

(statement block)
}

else

(statement block)
}

A chain of successive logical conditions.
The (statement block) associated
with the first true (condition) is
executed. If no true (condition) is
found the (statement block) associated
with the trailing else is executed.

Looping
while ((condition)) While the (condition) is true, (statement

{ block) is repeatedly executed.
(statement block)
}

repeat
{ (statement block) is executed 'forever'.
(statement block)
}

repeat
{ (statement block) is repeated until
(statement block) (condition) becomes true.

} The (condition) test is at the loop
until ((condition)) end.
for ((initialization) ;(condition) ;(reinitialization))

{ After (initialization) is executed a
(statement block)

do (loop limits)
{
(statement block)
}

'while' loop is set up based on
(condition); at the end of each loop

the (reinitialization) statement is executed.
Equivalent of the familiar Fortran DO

(without statement labels).

More details of these structures and their uses can be found in
Kernighan & Plauger (1976) and Munn & Stewart (1978,
1979).

In contrast the structured RATFOR code is easier to
read. RATFOR encourages the programmer to write
well organized code that consequently is easier to
debug and modify.

MA CRO

The structured control features of RATFOR are
important to the XTAL system, but it is the MACRO
facility of the RATMAC preprocessor that offers the
greatest gains towards the system objectives already
discussed. In simple terms, a macro provides for in-line
substitution and global editing of the Fortran code. As
the name 'macro' suggests its principal purpose is to
replace repeated blocks of code with a single name,
much as a FUNCTION subprogram does in Fortran.
However, unlike a FUNCTION, a macro does not have
to be executable and is only a recognizable entity before
RATMAC processing.

9 8 2 X T A L : N E W C O N C E P T S I N P R O G R A M S Y S T E M D E S I G N

Table 2. Comparison of RA TFOR and Fortran for the
bubble sort subroutine

(A) R A T F O R
subroutine rsort (V,n)
real V(n) # array of real numbers to be sorted
logical notend # notend is set false if a pass

produces no interchanges

notend--.true.
f o r (i = n ; i > l & n o t e n d z i = i - i)

notend=.false.
for (j = l ; j < i;j = j + 1)
if (V(j) > V(J + 1)) # elements out of order

notend=.true.
R = V(j)
V(j) = V(j + 1)
V(j + 1) = R

} # end of j loop
} # end of i loop
return
end

interchange elements

(B) Fortran
SUBROUTINE FSORT (V,N)
REAL V(N)
LOGICAL N O T E N D
N M I = N - I

C
C C H E C K FOR N.LE.I
C

IF (NM I.LE.0) R E T U R N
C SETUP REVERSE LOOP N TO 2
C

DO 2 L=I , NMI
I = N - L
NOTEND=.FALSE.
DO 3 J = 1,I
IF (V(J).LE.V(J+ 1)) GO TO 3
R=V(J)
V(J)=V(J+ I)
V(J+ I)=R

3 C O N T I N U E
IF (.NOT. NOTEND) R E T U R N

2 C O N T I N U E
R E T U R N
END

A macro instruction is defined as

MACRO: (name:, definition),

where 'name:' is the name by which the macro is
referenced in the RATMAC code, and 'definition' is a
collection of programming steps. A macro name may
have up to nine arguments, i.e. presented by the
combination $n, where n is the argument number. For
example,

MACRO:(BITSWORD:,36),
MACRO:(BITSCHAR:,8)

and

MACRO :(IFIX:,INT(SIGN (0.5,$1)+$1))

define the bits per word, bits per character and real to
integer rounding function for a given machine. On
preprocessing, every reference to BITSWORD:,
BITSCHAR" and IFIX:(X) in the RATMAC code
generates a 32, 8 and INT(SIGN(0.5,X) + X) respec-
tively in the Fortran code.

A particularly good example of a substitution macro
is the XTAL system common macro, SYSCOM:.
SYSCOM: is defined at the beginning of the XTAL
code and thereafter programs using the system
common block include only the statement SYSCOM:.
This type of use results in simpler, more concise and
more legible programs, and moreover ensures that any
changes in the system common block are global
changes.

Macros with 'dynamic' properties are also possible.
For instance, we would replace the last line in the
RATFOR bubble sort subroutine in Table 2 with the
statement, SWAPIA:(J ,J+I) where this macro was
previously defined as

MACRO:(SWAPIA:,R=V($1); V($1)= V($2); V($2)
= R).

This macro generates different code according to the
values of the arguments $1 and $2. For instance, the
statement SWAPIA:(15,IPT+2)in the RATFOR code
will appear in the Fortran code as the three lines

R = V (1 5) V (1 5) = V (I P T + 2) V (I P T + 2) = R .

Machine-specific code can also be introduced into a
program system using macros. For example, a
machine-specific bit-string mover could be incorporated
as

MOVEBITS" ((word FROM), (bit N), (word TO),
(bit M), (bit length NBITS))

with requests that a bit string of length NBITS, starting
at bit-position N of word FROM, be moved to word
TO, starting at bit-position M. The definition of this
macro for different machines is

Univac 1108" MACRO • (MOVEBITS:,FLD(35-
$4,$5,$3) = FLD(35-$2,$5,$1))

CDC Cyber73: MACRO" (MOVEBITS:,CALL
STRMOV ($1,$2,$5,$3,$4))

DEC VAX11/780: MACRO :(MOVEBITS:,CALL
LIB$INSV(LIBSEXTZV
($ 2,$5,$1),$4,$ 5,$3))

PE 8/32: MACRO" (MOVEBITS:,$3 =
IEOR($3,ISHFT(IEOR
(ISHFT(ISHFT($1,32-$5-$2),
$5,-32),ISHFT(ISHFT($3,32-
$5-$4),$5-32)),$4))).

Input-output control is one of the many other areas
where macros are useful for machine-specific sub-
stitution. The Fortran non-buffered READ instruction
varies considerably from machine to machine and

S. R. HALL, JAMES M. STEWART AND ROBERT J. MUNN 983

could be conveniently applied in a RATMAC program
as, say,

BINREAD: ((device), (parity), (buffer), (number of
words), (parameter array)),

where the definition is

ANSI Fortran: MACRO :(BINREAD:,READ($1)
($3(KIK),KIK = 1,$4))

UNIVAC 1108" MACRO:(BINREAD: ,CALL AA88
($1,$2,$3,$4,$5))

PE 8/32: MACRO:(BINREAD:,CALLSYSIO
($5,X' 59',$1,$3,$4"4,0))

CDC Cyber73" MACRO:(BINREAD: ,BUFFER
IN($1,$2)($3 (1),$3 ($4));IF
(UNIT ($1).EQ.1)IQUIT = 1).

Macros may also call other macros. For example, a
macro that limits a bit-string to the length of one word
could be of the form

MAC RO: (STRLIM :,$2 = MIN0($1,BITSWORD :)).

It is also possible to perform arithmetic and logical
operations within the macro itself and have the result
deposited in the Fortran. A typical use might be in a
macro that converts the number of words into the
number of characters; for example,

MACRO :(CONVCHAR :,[$2 = arith :($1,*,arith:
(BITSWO RD :,/,B ITSC HAR :))])

would mean that the RATMAC statement
CONVCHAR:(15 ,NCHAR) would be processed into
Fortran as NCHAR = 60 (using the values of
BITSWORD: and BITSCHAR: defined above). The
macro arith: does built-in integer arithmetic.

Macros are capable of referencing their own names
in recursive-type operations. A good example of a
recursive macro is given by Munn & Stewart (1978) for
converting an octal number to decimal. The definition
string is

MACRO: (LSTCHR:,[substr:($1,1enstr:($1), 1)])
MACRO:
(FSTPART :, [substr :($1,1 ,arith :(lenstr :($1),-, 1))])
MACRO: (OCTAL:,lifelse:($1. 0,[arith:(LSTCHR"
($1),+,arith:(8, ,OCTAL:(FSTPART:($1))))])]).

The RATFOR statements N = OCTAL:(177) and I
= IA(OCTAL:(77),2) generate the Fortran state-
ments, N = 127 and I = IA(63,2).

In summary, the combination of the RATFOR and
MACRO features in the RATMAC preprocessor
provides important benefits to a program system.
Macros make it possible to use machine-specific
functions in the system and yet to isolate them totally
from the program code. The definitions of machine-
specific macros are placed at the front of the system
and are adjusted to the local computing environment

before implementation. Apart from this no other
changes to the system code should be necessary. In
general, RATMAC code is more concise, logical,
legible, transportable and adaptable than Fortran.
Because machine-specific features can be used the
resulting compiled code will also be more efficient.
Further examples in the use of RATMAC will be
discussed in the subsequent sections.

A more subtle advantage of using RATMAC is that
the syntax of the language is under user control The
only limitation on the syntax is that the syntactical
construct be translatable into ANSI Fortran. Thus, for
example, if a CASE statement should prove to be a
desirable programming construct, it can be added by
the users, independent of whether ANSI Fortran
allows such a construct. A concomitant advantage of
this is that the user can be largely isolated from changes
in the Fortran standard. Instead of each individual
program being modified to conform to any new Fortran
standard, only the preprocessor needs to be altered to
generate Fortran compatible with the new standard.

3. The system structure

In the Introduct ion we discussed the importance of
planning how the component parts of the program
system are put together. Two fundamental
considerations in system structure are (1) the micro-
structure of the individual programs, and (2) the
load-module structure of the system as a whole.

Micros tructure

Microstructure is the term we shall use to describe
the organization and partitioning of code within a
calculation unit. There are many ways to approach this
aspect of program design and each programmer tends
to have a particular style based on past experience (you
can always recognize the old machine-coders!). There
are, however, two essentially distinct approaches. One
is to partition a calculation into a large number of small
subroutines, each with a specific task. The other is to
write programs composed of essentially contiguous
code and containing a minimum of calls to sub-
routines.

Both approaches have their strong points. The first
reduces redundancy of code and therefore minimizes
core utilization. To many programmers it also
simplifies writing and reading codes in a similar way to
the RATMAC macros. However, unlike macros,
subroutines usually remain partitioned at execution
time. This means that there can be significant over-
heads associated with the subroutine calling sequence
and this can have detrimental effects on computational
efficiency. The strength of the contiguous in-line code
approach is the reverse. Large block programs contain

984 XTAL: NEW CONCEPTS IN PROGRAM SYSTEM DESIGN

redundant code but are usually faster than their
multi-subroutine counterparts.

However, even in this latter case RATMAC can
offer significant advantages through a macro defined
internal 'procedure' mechanism. Details of the three
macros needed are given in Munn & Stewart (1979)
together with examples of their use. 'Procedures'
essentially remove redundant code by the use of
ASSIGN'd GOTO's.

The XTAL system uses both approaches according
to the circumstances. For instance, subroutine calls are
avoided in the 'inner loops' of CPU-intensive cal-
culations. The use of RATMAC macros often reduces
the need for smaller subroutines. However, where
significant savings are possible through specialized
subroutines, they are used. This is the case for systems
operations such as line and file input-output, memory
allocation, bit-string manipulation and packing, and
other service control functions. In the XTAL system,
as in the case of the XRAY system (Stewart, 1976a),
subroutines performing these tasks are grouped
together and referred to as the system nucleus. The
importance of the system nucleus concept to the XTAL
microstructure is threefold. It eliminates redundancy
for the most commonly performed operations; it
concentrates in one place those subroutines which are
most susceptible to implementation difficulties; and
lastly, and most importantly, it represents the
controlling subunit and communication link for the
whole program system. Further details of the nucleus
are given in § 4.

The implications of microstructure on a calculation
are also dependent on the type of load module to be
used at execution time.

Load-module structure

The finite size of direct-access memory usually
requires that a program system be subdivided into
convenient modules for loading. As discussed in § 1,
there are at least three distinct methods of loading a
program system - stand-alone, overlay and VMS
paging. Unlike the XRAY system, which was intended
mainly for use in overlay mode, the XTAL system
structure takes into account both the stand-alone and
overlay loading methods. Implementation is also
straightforward on VMS machines, but the different
methods of 'paging' make loading characteristics
unpredictable. In theory, VMS should be most efficient
when operations are concentrated in contiguous parts
of the load module. The XTAL structure attempts to
satisfy this requirement in major routines and in the
way it stores and manipulates data (see § 6). However,
there is some uncertainty in terms of overall VMS
efficiency about the effect of repeated references to
nucleus subroutines. One solution to this on some
machines may be to force the nucleus subroutines to

remain resident and not be paged. Fig. 1 shows
diagrammatically how the different loading methods
work with successive XTAL calculations.

An essential consideration in the load-module
structure of a program system is the ability of modules
to communicate data to each other. In the XTAL
system data exchange takes place at three levels. The
first is via a data file containing detailed archival
information about the problem in hand. The second
level is via the system common block (SYSCOM)
which contains essential control parameter information.
For the overlay and VMS execution procedures the
SYSCOM remains intact for the duration of a complete
XTAL run. However, in the stand-alone mode
SYSCOM is stored and recovered automatically (on a
scratch file) between each load (see Fig. 1). This facility
permits the nucleus routines to perform their control
functions quite independently of the loading procedure.
The third level is via a common block for a given
calculational segment.

4. The XTAL system nucleus

The concept of the XTAL system nucleus was
introduced in § 3. The nucleus contains those sub-
routines that either perform operations common to all
programs in the system or are necessary to control the
interaction of these programs.

In the XTAL system nucleus subroutines have

S tandalone Overlay

Calculation m 7" 1 [7~'v'~ ~-r:'~ ~. l oad

• ml~l" P'I~ 1' i i:i:!:i:iiiii } ioadl °d.

QX DQXA

' ,

\
Calculation i~i ~iilt 4 ~d" ;

Virtual Memory

I Memoryl ~--~ Disc
l l { I XTAI, I Files

I

:':::-::::2:
QX

Qx I QX
DATA DL YA 1

•..7~.-.--
i "'::::~':'X

II PROG2

i I
I I

Fig. 1. XTAL loading modes.

S. R. HALL, JAMES M. STEWART AND ROBERT J. MUNN 985

names of the form 'AAnn' and are catalogued
according to their function as follows:

AA00---AA 19: system control, line input-output,
and bit-string manipulation;

AA2ff-AA39: binary sequential file input-output;
AA40--AA59: memory allocation, data-time and

error processing;
AA60--AA79: direct-access file input-output;
AA80--AA99: machine-specific subroutines which

supersede or complement commonly
used operations.

In practice the nucleus routines are referenced using
descriptive macro names.

The number of nucleus subroutines is always kept to
an absolute minimum and usually only subroutines
AA80-AA99 will vary from machine to machine. Here
is a brief description of the existing XTAL nucleus
subroutines for the machine-independent part of the
system.

Macro Subroutine
- - AAAA

AA~O

READLINE: AA~ 1

DCODEFLD: AA~2

MOVEWORD: AA03

MOVEBYTE: AA•4

MOVECTOR: AA~5
MOVERTOC:

COMPCHAR: AA¢6

NCODEFLD: AA08

Description
Main entry-point routine

in the XTAL nucleus
which is responsible for
system (once-only)
start-up procedures, the
loading mode and
SYSCOM storage and
recovery.

Responsible for program
scheduling, as directed
by line input control
parameters.

Reads input lines (images)
and identifies command
parameters (described
in § 5).

Decodes input lines into
numeric and alpha field
data (described in § 5).

Moves word-strings from
one location to another
in the one-dimensional
Q x array.

Moves byte-strings from
one location to another
in the QX array.

Packs and unpacks byte-
strings into word
strings, and vice versa.

Compares a character-
string with a series of
character strings to find
a match.

Outputs line information
(described in § 5).

WRITEPKT: AA21

READWPKT: AA22

PKTPOINT: AA23

COPYFILE: AA24

QXMEMORY: AA41

AA42

Writes binary sequential
data file as packets in
directory-type records
(contents described in
§ 7).

Reads binary sequential
data file.

Extracts pointers to spec-
ific data in packets from
the record directory.

Copies binary sequential
data file in two-buffer
mode.

Allocates memory by
expanding or contract-
ing the QX data array
(described in § 6).

Handles all error con-
ditions and exits via
OZ00 or returns to
calling program.

In addition to the machine-independent AA routines
there may be some machine-dependent ones supplied;
for example:

AA81 *CDC SPECIFIC* con-
verts packed ASCII
numeric characters to
integers. Fortran rou-
tine used by the time
and data routines.

AA82 *CDC SPECIFIC* ex-
pands and releases
memory to resident
program. COMPASS
routine used by AA41.

AA83 *CDC SPECIFIC* moves
byte-strings from one
location to another.
COMPASS routine re-
places AA84 in CDC
version of the XTAL
nucleus.

AA84 *CDC SPECIFIC* com-
pares two byte-strings.
COMPASS routine
used by AA06.

There are three additional system nucleus routines
which, in overlay mode, load as separate modules. This
is because their function is connected with the start-up
and shut-down of calculations and because they are
only resident in memory during the transition from one
calculation to the next.

MT00 Calculates memory required for next load
module and the area used in the QX array as

986 XTAL: NEW CONCEPTS IN PROGRAM SYSTEM DESIGN

a program common block. MT00 also reports
the times and memory utilized in the previous
program.

SY00 System start-up initialization, and sets system
common SYSCOM.

OZ00 Error exit routine; tells the user reason for
premature shut-down.

5. Line input-output control

In the XTAL system, input or output images are not
processed by Fortran I/O routines. The Fortran
R E A D / D E C O D E / E N C O D E / W R I T E / F O R M A T
functions have been replaced by the XTAL
nucleus subroutines AA01 (READLINE:)/AA02
(DCODEFLD:) and AA08 (WRITLINE:)/AA07
(NCODEFLD:). This has been done for three
reasons: the nucleus subroutines are smaller than most
Fortran library routines; they have features especially
tailored to XTAL needs; and they avoid the difficulties
often associated with the inconsistencies of Fortran I/O
as implemented on various machines.

Line input

This is handled exclusively by routines AA01 and
AA02. AA01 reads a line image of characters from the
input file or device and places it in the buffer BFINIM.
It then scans the leading characters of this buffer for an
identification code which indicates whether the line
image is for system control, program initialization, or
program parameter input. If a system control code is
detected AA01 uses AA02 to decode numeric
information from the character buffer BFINIM into
floating-point buffer BFINFP. The control function
(see Table 3) is then completed before reading the next
input image.

Table 3. System input control functions

Name Function

T I T L E alpha-numeric page leader
REMARK alpha-numeric line insert
FILES I/O file assignments
MEMSET preset memory allocation
SETID preset input image names
FIELD preset input field formats
ORDER preset input field order
FINISH shut down system and exit

If the identification code is not a system control code,
the AA01 returns to its caller, which for program
initialization codes will be the system scheduler AA00,
and for program parameter codes will be the program
itself. Again AA02 is used to convert numeric character
information into floating-point numbers.

A powerful feature of the AA01/AA02 routines is
the provision for either free or fixed format line input.
The user may fix the input image format with the

FIELD control image. In free-format mode, numeric or
alpha-numeric data are delimited by a blank or a
comma. There are also special codes Sn and .n that
enable skipping and positioning of data, and an added
convenience for interactive input. The image

PARAMS 1,23,,5.72 $3 1000 ,3 7 7 . - 1 , 6 256

is decoded into successive fields containing
I .,23.,7.7,5.72,null,256.,null, 1000.

Another feature of AA02 is its flexibility in decoding
numeric data of different forms. For instance, each field
in the image

3 3.~ 30 . -1 +3 +3. +.3+1 + 3 0 . - 1 3 0 - 1 .'03+2

would be decoded as the number three.

Line output

This is controlled by routines AA07 and AA08.
AA07 is responsible for translating floating-point data
contained in a specified input array into character
strings in an output buffer. The output routine AA08
can automatically provide both page headings and sub-
headings for column output if these are desired.

The output format for AA07 is specified by a coded
string of the form CCCLLDT where CCC is the
right-justified column of the character string, LL is the
total length of the character string, D is the number of
digits after the decimal point for E- and for F-type
formats or the number of 'forced' digits for I-type
format, and T is the format type. There are nine format
types:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

E-type format S.YYYY+_ZZ (S is blank or -) ;
F-type format SXXX.YYY;
I-type format (base-10) SXXX (0 < X < 9);
I-type format (base-2) SXXXX (0 < X < 1);
I-type format (base-8) SXXXX (0 < X < 7);
I-type format (base-36) SXXXX (0 < X < Z);
binary packed number YYYY (0 < Y < 1);
octal packed number YYYY (0 < Y < 8);

(9) hexadecimal packed number YYYY (0 < Y < F).
Format specification is simplified for the programmer

by the macro FMT: (CCC,QLL.D) for the common
format types (T=1,2,3). QLL.D is the Fortran-type
parameter where Q is an E for T= 1, and F for T=2 and
an I if T=3. An important feature of AA07 is its ability
to change automatically the specified format to avoid
an overflow of the LL parameter while maintaining the
maximum number of significant places. If the number
-1234.56789 was passed to AA07 with the format
FMT: (10,F10.5) or 101052., it would be output as
-1234.5679 (automatically dropping the last decimal
place). If the format was FMT: (10,F6.3) the number
would be output as -1235. Yet again, if the format was
FMT: (10,F5.3) then the output number would auto-
matically adopt an E-type format - .+04 . Further
reduction in LL to 3 would result in a field overflow and

S. R. HALL, JAMES M. STEWART AND ROBERT J. MUNN 987

*** would be output. This illustrates the flexibility of
AA07 in printing some information wherever possible.

When the numeric data have been formatted, the
output buffer is written out by the routine AA08. AA08
is responsible for three functions: outputting numeric
data and header information to both the primary and
secondary line output files, controlling pagination and
page title output, and monitoring line ouput priorities.
All lines passed to AA08 are assigned an output
priority, 1 to 5. Separate output priority limits are set
for two separate output devices and this limit may be
varied during an XTAL run. In this way the user can
control the nature and the extent of line output on either
device. The priority assigned to each line sent to AA08
is based on its importance to the user. Priority
categories are:

line priority 1: essential output;
line priority 2: abbreviated output;
line priority 3: standard output;
line priority 4: extended output;
line priority 5: complete output, with I/O and
memory diagnostics.
A typical use of this facility would be to set the

priority limits of the output files to 2 and 4. In this way
the user can list (or scan with a CRT) the abbreviated
file containing lines of priority 1 and 2, and then decide
if further details are required from the extended output
file containing lines of priority 1, 2, 3 and 4. This type
of output control is important for interactive use of the
XTAL system.

6. Memory and data management

The importance of carefully planned data management
in program systems was stressed in the Introduction.
The size and diversity of crystallographic data, the
frequent use of word-packing, and the range of machine
types currently in use make this one of the most difficult
aspects of system design. We shall cover this topic in
four parts: word specification, system common,
program common and the QX data array.

Word specification

This is critical to any system because of the variation
in the length of a single word from machine to machine,
and because of the different ways integer, floating-point
(real) and character information is used within these
words. The XTAL system is designed to accommodate
machines with a minimum integer word length of 16
bits and a minimum real word of 32 bits. Allowing for
16-bit integers, with the implied maximum magnitude of
32 767, places the emphasis of data handling on real
words.

Real words are used for packing so that a full 32 bits
are available for this operation.

The only purpose for which integers must be used in
XTAL is as indices to the QX data array. For
machines with a 16-bit integer word the upper index
limit of 32 767 is unlikely to prove a problem because
of the commensurate limitation to the size of direct-
access memory. Packed integer numbers (in a real
word) are used extensively in order to reduce memory
demand and increase computational speed. To ensure
optimal speed for the packing/unpacking operations the
macros MOVEBITS: and INTPACK:/INTUNPACK:
are used. These macros are designed to use the fastest
bit manipulation software available at each installation.

System common

This is the labelled COMMON/SYSCOM/consist-
ing of some 250 words. SYSCOM is the data
communication region for all subroutines within the
nucleus and for all programs to the nucleus. The actual
contents of SYSCOM depend on machine-specific
(macro) parameters which ensure that its length is kept
to an absolute minimum. SYSCOM may be the only
labelled common in XTAL depending on the definition
of the macros COMI:, COMF:, COMC: (see below).
This is a considerable departure from the XRAY
system and arises principally from the requirement of
some overlay loaders that all labelled commons must
also be declared in the root element. Limiting labelled
commons also reduces problems with VMS execution
on machines where common blocks are addressed
indirectly through page 0.

Program common

For large calculations it is often necessary to have an
efficient method for communicating data between
the program subroutines or overlay segments.
Traditionally this is done by using labelled commons
specific to these routines. However, as discussed above,
multiple use of labelled commons may not be efficient
with some loaders. In the XTAL system flexibility
is maintained by using the macros COMI:($1),
COMF:($1) and COMC:($1) as the labels of any local
labelled commons involving integer, real and character
variables, respectively. $1 is the program name prefix.
In this way, the XTAL installer can globally edit the
local labelled commons to suit the requirements of the
compiler and loader.

QX data array

This is the single one-dimensioned array used to
store all directly addressable data in the XTAL system.
In stand-alone and overlay loading modes, the length of
the QX data array is varied dynamically according to
the number of words currently needed to store data.
For VMS operation, dynamic core allocation is

988 XTAL: NEW CONCEPTS IN PROGRAM SYSTEM DESIGN

unnecessary and is disabled. Fig. 2 shows a typical
layout of the QX data array. The array QX(1) is
declared in SYSCOM and is assumed to be open-ended
up to a possible memory maximum defined by
MEMMAX:. Certain operating systems and loaders
require that some memory immediately following
SYSCOM be reserved for program code. Fig. 2 shows
that the first 'usable' word of the QX array is defined as
QX(QXSTAR+ 1). The value of the marker QXSTAR
is non-zero for machines requiring that program code
be loaded after SYSCOM. The value of QXSTAR
needed to 'skip' the program code for each calculation
is stored in the nucleus memory initialization routine
MTO~) (see § 4).

MT66 is also responsible for setting the marker
QXWORK, which defines the last word of the QX
array area which is the minimum data storage
necessary for this program. The region
QX(QXSTAR+I) to QX(QXWORK) is, in fact, a
pseudo-common area which is always allocated. In
dynamic allocation mode, the array is initialized at
QX(QXWORK) and is never reduced below this point.
Requests for additional QX memory are to the nucleus
subroutine AA41, specified by the marker QXREQU.
AA41 allocates QXREQU, if available, and returns the
actual amount of memory allocated as the marker
QXAVAL. It is via these two parameters, QXREQU
and QXAVAL, that the QX array is lengthened or
shortened according to current demand. At all times
the user may override the dynamic allocation aspect of
QX by entering a MEMSET parameter (see Table 3) to
fix the length of the QX array.

7. Data file structure

the contents of all succeeding packets in that record. In
this way the packets and the logical records need only
be as long as the data demand. The structure of the
directory is simple. Each word in the directory packet
contains an identification number which is unique to
the specific crystallographic item stored in the
identically ordered word in all subsequent packets of
that logical record. Fig. 3 shows a typical data file
structure. For the programmer, the task of extracting
data from a directory-driven file is further simplified by
the nucleus subroutine AA23 which points to the
appropriate word in the packet containing a specified
identification number.

It is worth noting that the logical record also
contains information about the lengths of the packets,
the number of packets, and the physical buffer lengths
used in the input-output of the data file. However, this
book-keeping information is of little interest to the
XTAL user or, for that matter, to the XTAL
programmer, because the physical aspects of file I/O
are handled by the nucleus routines AA21-AA24.
Details of the structure of the XTAL data file, and the
assigned identification numbers, are given in Hall,
Stewart, Norden, Munn & Freer (1980).

The concepts outlined in this paper have been the
impetus for a cooperative programming effort
sponsored by the National Resource for Computations
in Chemistry (NRCC) and the National Science
Foundation. The details of the proposed system are
available in a number of technical reports which can be
obtained from the University of Maryland Computer
Science Center.

The structure of the archive-type data files has in the
past represented an obstacle to the use of program
systems for many types of problems. This is because
data files are usually of a f ixed sequential format. Such
a format provides for simple and fast access for the Pa~kl
majority of problems but is relatively inflexible and
even unusable in many situations.

The XTAL system uses a 'new' type of data file
structure. As with the XRAY system, the file is divided Pack2
into 'logical records' according to the type of crystallo-
graphic data. Each logical record is subdivided into
units of information referred to as 'packets'. The first

Pack3

packet of each logical record contains the 'directory' to

i I

e[A ~ A / ~ . un " / ~ . s Y $ ~ O v e r l a y ~ : : . Q × ::l:i:i:::: A c t i v e :i:::::::;:|

1 V/~/~/~% ~//,~,,//,~////~,~ii:iii!ii;!j;iii~i]i~i:i~i~i:i:i:i:ii;iii!i~i!ii

QX(1) gx (STAR) QX (WORK) QX (AVAL) QX (MAXM)

Fig. 2. XTAL data management.

Pack4

Logical Logical

Record n Record n+2

) ;?(-sL.i:7.~.Y:
3:~?~ : :..g-~..~:#~

!i~ i~~ L.~..%.:.
. . ' : n . . . ' : . . : .

010100.

0.11735
.......

17322. 5

010101.
........

0.13752

-b7.7

010102.

Logical

Record n+l

Pack i ~lOS"i~;'cale'i
33V.-3V.-.v.-;.v..v../.'.

Pack2 7.352

Pack3 5.788

Pack4 6.1250

Pack5 5.811

Packet

Directory

Fig. 3. XTAL data file structure.

iilill
0 o 0 0 0

0.25000

Pack 0.73112

I ' 2.37

0.957

0. 250O0

Pack 0.58621

S. R. HALL, JAMES M. STEWART AND ROBERT J. MUNN 989

The XTAL system and the concepts on which it is
based have recently been used under the sponsorship of
NRCC to develop a portable multiple isomorphous
replacement program. A discussion of this project and
its wider implication can be found in Robinson (1980).

References

HALL, S. R., STEWART, J. M., NORDEN, A., MUNN, R. J. &
FREER, S. (1980). The XTAL System of Crystallographic
Programs: Programmer's Manual. Report TR-873.
Computer Science Center, Univ. of Maryland, College
Park, Maryland.

KERNIGHAN, B. W. & PLAUGER, P. J. (1976). Software
Tools. Reading, Mass.: Addison-Wesley.

MUNN, R. J. & STEWART, J. M. (1978). RATMAC:
Kernighan and Plauger's Structured Programming
Language. Report TR-675. Computer Science Center,
Univ. of Maryland, College Park, Maryland.

MUNN, R. J. & STEWART, J. M. (1979). RATMAC: A
Primer. Report TR-804. Computer Science Center, Univ.
of Maryland, College Park, Maryland.

ROBINSON, A. (1980). Science, 207, 746.
STEWART, J. M. (1976a). The XRAY system. Computer

Science Center, Univ. of Maryland, College Park, Mary-
land.

STEWART, J. M. (1976b). Crystallographic Computing
Techniques, pp. 433-443. Copenhagen: Munksgaard.

STEWART, J. M. & MUNN, R. J. (1978). In Computing in
Crystallography. Delft Univ. Press.

Acta Cryst. (1980). A36, 989-996

On Formalism of Extinction Correction within the Validity Limits of the Mosaic Model

BY N. M. OLEKHNOVlCH, V. L. MARKOVlCH AND A. I. OLEKHNOVlCH

Institute of Physics of Solids and Semiconductors, Byelorussian Academy of Sciences, Minsk 220726, USSR

(Received 14January 1980; accepted 22 May 1980)

Abstract

The results of an investigation of the polarization
coefficient of X-ray radiation diffracted in real crystals
are given. The form of the angular dependence of the
polarization coefficient in the range of the Bragg
reflection is found to be qualitatively different in the
cases of primary and secondary extinction. It allows
the unambiguous identification of the type of extinction
in the crystal. On the basis of the experimental data
analysis of the polarization coefficients for silicon and
germanium crystals with different dislocation densities,
it is shown that the mosaic model of a crystal is suitable
for describing X-ray scattering in real crystals if the
dislocation density is higher than 104 mm -2 and in
practice only primary extinction is present in mosaic
crystals. An expression is given for the primary
extinction factor for the mosaic crystal, obtained on
the basis of the solution of the Takagi-Taupin
equations for finite crystals. This expression was used
for the analysis of the LiF and NaF structure factors
measured by different authors. The effective size which
was obtained for the domains appeared to be physi-
cally reasonable and to be directly connected with the
value of the dislocation density in the crystal.

1. Introduction

Extinction in X-ray crystallography is described in
most cases in terms of the Darwin (1914) mosaic block
model. Zachariasen (1967) developed the formalism of
the extinction theory on the basis of the Darwin
energy transfer equations and applied it in the analysis
of X-ray data for a number of substances
(Zachariasen, 1968a,b). The Zachariasen theory
greatly renewed interest in extinction. Coppens &
Hamilton (1970) generalized the Zachariasen approach
in the case of extinction anisotropy. It was established
by many authors that the Zachariasen formalism
significantly improved the agreement between the
calculated and corrected-for-extinction experimental
structure factors. This formalism was refined by
Cooper & Rouse (1970) and more strictly recon-
sidered by Becker & Coppens (1974a, 1975). At the
same time, different authors pointed out the short-
comings of the indicated formalism. Its main limitation
is the kinematical approach (Werner, 1969), for it is
based on the transfer differential equations, which take
no account of coherence, since they involve only the
intensities of the beams. This method does not appear
to be suitable for correcting for severe primary

